
18.100A PSET 4 SOLUTIONS

DAVID CORWIN

Problem 1

Let f(x) = y2 cosx−ex. Then f(0) = y2−1. As y ≥ 1, we have f(0) ≥ 0.

As well, we have f(π/2) = 0− eπ/2 = −eπ/2 < 0.

By the intermediate value theorem, since f(0) ≥ 0 ≥ f(π/2), there is
x0 ∈ [0, π/2] such that f(x0) = 0. Since f(π/2) 6= 0, we know x0 6= π/2, so
x0 ∈ [0, π/2).

Comments. While it might help conceptually to consider the cases y = 1
and y > 1 separately, you really don’t need to do that. The intermediate
value theorem applies equally well in each case.

Problem 2

Suppose, for sake of contradiction, that f(x) is not strictly increasing.
This means that we can find a ≤ c < d ≤ b such that f(d) ≤ f(c).

Since the range of f is [f(a), f(b)], we know f(a) ≤ f(d) ≤ f(c). It
follows that there is x0 ∈ [a, c] such that f(x0) = f(d). But x0 6= d because
x0 ≤ c < d, which means that f repeats a value, a contradiction.

This contradiction implies that f is strictly increasing.

Comments. This was a lot simpler than many people made it out to be.
You only need to use the intermediate value theorem once, and you really
don’t need to break it down into so many cases.
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Problem 3

(a). Let S1, · · · , Sd be the intervals, and let S be their union.

If {xn} is a sequence contained in S, then there is some integer i ∈ [1, d]
such that Si contains infinitely many elements of the sequence. We consider
the subsequence of {xn} consisting of all {xn} such that {xn} ∈ Si. Then
this subsequence is a sequence in Si, so by compactness of Si, it has a
subsequence that converges to a limit in Si (and hence in S).

In summary, any sequence {xn} in S has a convergent subsequence in S,
so S is sequentially compact.

(b). Let Sn = [n, n + 1] for integer n. Then the union of all the Sn’s is R,
which is not compact, even though each Sn is compact.

Problem 4

(a). We let f(x) =
x

1− x
for x ∈ [0, 1) and f(x) = 3352435 for x = 1 (in

fact, any positive number will do).

Then f is always positive, f(0) = 0, and lim
x→1

f(x) = ∞, so the interme-

diate value theorem tells us that f takes every positive real value. (More
precisely, for any positive y, we can find c close to 1 such that f(c) > y, so
the intermediate value theorem tells us that f takes the value y somewhere
in the interval [0, c].)

As an alternative, one could consider f(x) = tan(πx/2) for x < 1.

(b). A continuous function is bounded on a closed interval, so the range of
f must be bounded. But [0,∞) is not bounded.

Comments. Some people considered f(x) = 1/x, but the problem with
this function is that it does not hit the values of y that are between 0 and
1.
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Problem 5

(a). Suppose f has a minimum on I. Call that minimum m. Then since f is
always positive, we havem > 0. But since lim

x→∞
f(x) = 0, we have |f(x)| < m

for x sufficiently large, a contradiction. This contradiction implies that there
is no minimum.

(b,c). We do part (b) while only assuming that f(x) takes at least one
non-negative value on all of R.

We divide into two cases.

In the first case, we assume that f does not take any positive values.
Then by assumption, there is some c such that f(c) is not negative, which
implies that f(c) = 0. But then f(c) is the maximum, so we are done in
this case.

In the second case, we assume that f does take (at least one) positive
value. Let c be such that f(c) > 0. As lim

x→∞
= 0, we can find a > |c| such

that |f(x)| < f(c) whenever |x| > a. As f is continuous, it has a maximum
value on the closed interval [−a, a], call that value M . Then f(c) ≤ M
because c ∈ [−a, a], so for all x /∈ [−a, a] we have f(x) ≤ |f(x)| < f(c) ≤M .
As f(x) ≤M for all x ∈ [−a, a] as well, we find that M is the maximum of
f .

Comments. As a much less weak assumption, one might assume that
f(x) ≥ 0 for all x. But in fact, the argument works even when assum-
ing non-negativity for only one value of x.
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